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The partition function of the XY chain 

J S Denbight 
Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS 

Received 17 October 1977, in final form 14 April 1978 

Abstract. A new form of solution to the X Y  chain is found which bears a remarkable 
similarity to the Onsager solution. It  is used to examine the analyticity of the ther- 
modynamic limit. This solution has transfer matrix like properties and the question of 
some form of universality of eigenvalue distribution is examined. 

1. Introduction 

1 . 1 .  The XYchain 

The Hamiltonian HN for the closed anisotropic X Y  chain with N sites in field B is 
given by 

N N 

H N = - J  2 [(l+y)a,icr, ,+i+(l-y)ayiay,+iI-B 2 a z t )  (1.1) 
t = l  t = l  

the ( N +  1)th site being the same as the first site. The  partition function ZN for this 
Hamiltonian was originally found by Lieb et  a1 (1961) and Katsura (1962). In this 
paper the existing solution for Z, is taken and re-expressed in a different form. This 
leads to a new expression for A = limN+, Z Z N  as an infinite product and not as an 
integral as before. 

This new solution is shown to have a remarkable similarity to the Onsager 
solution, suggesting the possibility of close relations between other one-dimensional 
models and higher-dimensional models. In P 3 the new expression is used to find the 
zeros and singularities of A.  This may shed some light on what functions make good 
approximants to the thermodynamic functions of other systems. It is well known that 
the X Y  chain has critical points at zero temperature where B = *25 and Suzuki 
(1971) related the critical exponents of this model to those of the Ising square lattice. 
Below it is found that A has an infinite number of singular surfaces intersecting at the 
critical points. 

1.2. The transfer matrix form 

This paper will also deal with the way in which ZN depends on  N. This dependence is 
examined in detail for the X Y  model because it may be an important prototype for 
other models. W e  discuss how this may lead to  a numerical solution for one- 
dimensional models which cannot be solved analytically. Those one-dimensional 
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models which have transfer matrices can normally be dealt with by diagonalising the 
transfer matrix. For such models the partition function is given by 

K 
ZN = gjA (1.2) 

j - 0  

where the A j  are the eigenvalues of the transfer matrix and K is its order. Even 
models which do not have transfer matrices may have this property, although K may 
now be infinite. If K is infinite some restriction on the Ai, gi is necessary since without 
restriction it may be shown that any sequence { Z N }  can be expressed by the right-hand 
side of equation (1.2). Let us assume that equation (1.2) is satisfied for each ZN for 
N 3 N o ,  Z j  l g j A p I  is bounded and the A j  have no limit point other than zero. Then it 
will be said (Denbigh 1974) that the sequence { Z N }  is a transfer matrix form of order 
K beyond NO. The Ai  will be called its 'eigenvalues' and the -gi its 'residues'. It 
is normally assumed that I A i - 1 1 3 1 A j i  for each j .  Let %(w) ,  the grand partition 
function, be defined as Z",=,, Z N w  . Equation (1.2) and the conditions on the Ai, gi 
ensure that 

N-1 

The only singularities of % ( w )  are first-order poles which occur at the A T ' .  
Unpublished analytical work carried out by J L Martin and the author suggests a 

rigorous proof exists that the transfer matrix form applies to a variety of systems which 
do not have transfer matrices. Denbigh (1974) proved that the X Y  chain yields a 
transfer matrix form. This is also shown by an easier method. For models soluble by a 
transfer matrix the inverse correlation length is normally ln(Ao/A ') (Fisher and Bur- 
ford 1967). Martin's theory suggests the same may be true of the X Y  chain and other 
models which do not have ordinary transfer matrices. 

For short chains of many models the eigenvalues of the Hamiltonian can be 
evaluated (e.g. Bonner and Fisher 1964) and from these the ZN for small N at various 
temperatures may be obtained. The Pad6 approximant (Baker 1965, Gaunt and 
Guttmann 1974) has simple poles and can be fitted to % ( w ) .  Since the coefficients of 
Z ( w )  are the ZN Pad6 analysis can be used to obtain estimates of the largest 
eigenvalues and their residues for various temperatures. This method has been 
successfully used by the author in unpublished work on the closed isotropic field free 
spin-; Heisenberg chain. It gives accurate and convincing results except at very low 
temperatures where the Pad6 estimates become inaccurate. His work shows that the 
partition function is given by 

Z H ~ ~ ~ N  =Ar+3Ar+O(Ar)  where A l  =2p-$p2+O(p3) .  

At low temperatures it is found that the dominant eigenvalue A. is no longer much 
greater than \ A l l ,  IA21 etc, and this makes it difficult to obtain reliable estimates of A. 
using Pad6 analysis. It may be shown (Denbigh 1974 and below) that in the X Y  chain 
the eigenvalues behave in a similar fashion and this behaviour is expected for other 
models as a critical point is approach. In the summary we discuss how, if it may be 
assumed that the eigenvalue distribution of a model under examination is similar to 
that of the X Y  chain, the known results for the X Y  chain can be used to improve the 
Pad6 estimates. It is also shown that the open isotropic XY chain has far fewer 
eigenvalues than the closed chain and reasons are given why open chains for other 
models are probably more suitable for Pad6 analysis than closed ones. 
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In 4 4 the eigenvalue distributions of various models are compared and one seeks 
to show that there are basic similarities. There is a detailed comparison between the 
Onsager solution and the Ising chain in a transverse magnetic field. The results 
suggest that for most models as temperature tends to zero, the eigenvalues become 
very dense apart from the few largest which may stand out from the rest. If, however, 
there is a critical magnetic field, then the number of eigenvalues lying in any neigh- 
bourhood of ho  tends to infinity as the temperature tends to zero. 

2. The reduction of {ZN} to a transfer matrix form 

2.1. The solution of the X Y  model 

The partition function corresponding to the Hamiltonian of equation ( 1 . 1 )  is given by 

2 1 - N Z N  = n cosh vq + n cosh vq + S r  n sinh vq +SOS? n sinh vq. (2 .1 )  
4 € 2 +  q € P -  4 E P +  q E Q -  

Here the following definitions apply for real p, J, y, B :  

1 ,  
{ - 1 ,  

1 ,  p ( B - 2 J ) a O  

p(B + 2 5 )  3 0 
p ( B  + 2 J )  < 0 ,  

- 1 ,  / 3 ( B - 2 5 ) < 0 ,  
s 2 4  

so = -S1S2, K = 2pJ, t = t j - ’ ~ ,  

vq=IK[(t  - ~ o s q ) ~ + ~ ~ s i n ~ q ] ” * 1 ,  

9, is the set { r / N  +(27r /N) j }  and 9- is the set { (27r /N) j } ,  here j must be an integer 
and the elements of 9+ and 2- are modulo 27r. The expressions for So and SI correct 
an error in the solution published by Denbigh (1974)  which occurs when B = *2J. 

2.2. A n  infinite product 

From Copson (1935, p 179, example 7 )  one may deduce that 
m m 

k = l  k = l  
cosh Y = n [l + 4 ~ - ’ ~ ’ ( 2 k  - 1) - ’ ] ,  sinh v = Y n ( 1  + 7r-2v2k-2) .  (2 .3)  

Let p = cos q, z = eiq so that 2p = z + 2 - l  and vq may be regarded as v(z). 
One may say that for k 3 1 

1+4r -*  v 2 k - 2 -  - ak(l - ( L ; z ) ( ~  - ( ; ; ~ - ‘ ) ( l  - ( ; ; z ) ( ~ - [ ; ; z - ’ ) .  (2 .4)  

(2 .5 )  

(2 .6)  

Here z is one of & I ,  si:, ( k z ,  6;: when 
1 2 2  2 - 3 ~  k = Y  . 

The &a may be obtained from 

t k a  + 6;; = 2pka 

-$7r2k2= ~ ~ = K ~ [ t ~ + ~ ~ - 2 t p  +(1 -y2)p2]. (2 .7 )  

where pkl and P k 2  are the solutions of 
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If is a root, so also is 6;: and &a is usually chosen so that /&a/  3 I. If both l t k u l >  1 
then (&I, 5 k 2 )  will be said to be the principal pair of values. to1, 5 0 2  and a0 are defined 
by 

v2=ao( l  -5;:z)(l -[;:Z-l)(l -&;z)(l-&;z-l). ( 2 . 8 )  

Since each 5-l e2vii’N is a root of t-N 

From equations (2.31, (2.4) and (2.9) 

(2.10) 

If p ,  q are both integers such that p q, let 

Applying results like equation (2.10) to equation (2.1) one obtains 

cc W 

21-NzN = n’ [aY~~l(1+5;kNlu)21+ n, [aY~~1(1-S;kN_la)21 
( k u )  (ka) 

k = l / 2  k = 1 / 2  

W W 

+sy n’ [aYL2(1+5;:)2]+SOSy n, [a;L2(1-5;kNo)2]. (2.11) 
( k a )  ( k u )  
k = O  k = O  

If K, t ,  y are real and y # 0 and t # *l, then for real 4 v i  is positive by equation 
(2.2). The principal values of (&l, 5 k 2 )  lie outside the unit circle since otherwise 
equation ( 2 . 5 )  cannot be satisfied. Clearly [k l  and 5 k 2  are complex conjugates of each 
other or else both real. By continuation when t = *l or y = 0 this is still true although 
they may now lie on the unit circle. By applying equations (2.4) and (2 .8 )  when z 
takes an arbitrary value on the unit circle it follows that a. is non-negative real and 
every other ak is positive real. 

From equation ( 2 . 7 )  

P k P  = {f f [ y 2 f 2  - (1 - ’)’)($’ + $T2K -2k*)]1’2}( 1 - y2)- ’ ,  (2.12) 

From equation ( 2 . 6 )  

6 k o  = p k a  * (Pk - (2.13) 

If y # *l when ( k / K ) + . o  

(2.14) 

(2.15) 

P k a  = [ t * z i r ( l  1 - y 2 ) ” * ~ - ’ k  +o(K/~) ] ( I  - y 2 ) - l ,  

6 k o  = 2pkm + o( ) = [ 2t * iT( 1 - y2)”2K-’  k + O(K/  k)]( 1 - y2)-l. 
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For large k the 5 k a  approximately lie on a straight line at equal intervals going off to 
infinity in both directions. The distribution of the &.a is discussed in greater detail by 
Denbigh (1 974). 

2.3. A further reduction of the partition function 

Because of the way & behaves as k + 03 (1 -si:) is absolutely convergent for 
N 2 2. From equation (3.3) II?=:=, ak  is absolutely convergent. Hence each of the 
infinite products of equation (2.1 1) is absolutely convergent for N 2 2. Let 

(2.16) 

Then for N 3 2 

(2.17) 

If IIFz1 (1 + x r )  is absolutely convergent for N a N O  then the sequence of such 
infinite products as N + 03 is a transfer matrix form beyond No, Denbigh (1974). 
When /ti < 1 so that SO = 1, by expanding equation (2.17) for N 3 2 

ZN = A N [  1 +([;I )-" + +4(&!11612)-~ + ,  e . I  
+SYCN[l  +(501502)-N+2(501521)-N +2(501522)-N +.  ' . I .  (2.18) 

When It1 > 1 so that SO = -1 

(2.19) 

It is clear from the cancellation or duplication of terms that {ZN} is a transfer matrix 
form beyond 2. For lti < 1 the eigenvalues of the transfer matrix form are A, SIC, 
At;?, SlC&:50;', etc, and for /ti > 1 they are A, SIC&:, S1C&, At;:, etc. In both 
cases, the degeneracy of each eigenvalue is a positive integer. 

A and C may be obtained from equations (2.16). The ak  may be obtained by 
equating the coefficients of z 2  in equations (2.4) and (2.8): 

(2.20) 

From equations (2.16) and (2.20) one obtains 
I + $  

(2.rr)-2'+1(r(~ + 1. - 2 1 21 2)) 2(1-y ) K  n' (52k-1 152,-12)) (2.21) 
1-03 k = 1 / 2  

(2.22) 
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These are new expressions for A and C which may be compared with 
27r 

In ( S A )  = ( 2 ~ 1 - l  J - = o  In cosh vq dq 

i =o 

2 n  

In (%c) = (277)-' In sinh vq dq. 

(2.23) 

(2.24) 

These equations were obtained by Lieb eta1 (1961) and Katsura (1962)from equation 
(2.1) by letting N + CO so that q becomes a continuum. 

2.4. When y = +1 

When y = *1 we have the Ising interaction. But the magnetic field is now perpendi- 
cular to the spins and not parallel to them as in the problem solved by Ising. As t --* 0 
the \&a\ --*CO so that all but two eigenvalues tend to zero. This is to be expected from 
Ising's solution. Suppose now t is not very small and y is very close to * l .  From 
equation (2.7) and taking pkl as the smaller of the two solutions 

(2.25) pk1=(t2+y2+zr  1 2 2  k K-2)(2t)-'+0(1 - y 2 ) .  

If y = *1 by equation (2.6) 

(2.26) - l + l  2 2 &i+[i:  = t + t  4~ k K-'t-'. 

From equation (2.7) 

pklpkz= ( t 2 +  y2+aT2k2K-2)(1 -y2)- l .  

Applying equations (2.25) and (2.6) 

[k2=4t(1-y2)-'+0(1).  

From equations (2.21) and (2.22) when y = *l 

(2.27) 

(2.28) 

Later these equations will be compared with Onsager's solution. 

3. An analysis of the solution 

3.1. The behaviour of the ak 

Let Jx, Jy be respectively the strengths of the OX, OY interactions, so that 

J x  = J ( 1 +  Y ) ,  Jy = J(1-  y ) .  

The case where Jy = -J, and y = *CO is no longer exceptional using these parameters 
as equation (2.12) might suggest. From equations (2.6) and (2.7) 

0 = aT2k + p 2[B  + J f + Jt - (Jx + Jy)B ([ka + ) + J J y  ([:a + 6;: )] 

= tL~(ti2 1, say. (3.1) 
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P as defined above is a quartic polynomial except when p, J, or Jy is zero. Points in p, 
B, J,, J, space where all the coefficients of P are zero will be said to be of type L or 
simply labelled L. It is shown in the appendix that ak is zero at and only at points of 
type L. The zeros of A and C may be obtained this way. At L at least two of J,, Jy 
and B must be zero. It may be of significance that in such cases the problem is soluble 
by an ordinary transfer matrix. It is shown in the appendix that each ak is continuous 
everywhere. It is also shown that if &a takes its principal value 6;; is continuous 
everywhere except at L where it may take any value. 

Let us consider what happens to the ak as k +CO. Suppose that p, B, J,, J ,  lie in 
any bounded domain D. If 3 1 it follows from equation (3.1) that for some A’ 
independent of k 

1 2 2  
zv k <A’+IP21(IJx+Jy/ IBI+IJxJyI)I&I* 

Thus, there exist positive A”, k “  independent of k such that for p, B, J,, J ,  E D and 
k > k ”  

1fka  I > A”k. (3.2) 
Equating the coefficients of t o  in equation (2.4) 

1 + ~ T - ~ ~ ~ ( B * + J ;  +J;)k-*=ak(l +&: +25;:5;: +[;:[if). 
Equation (3.2) shows that there exist A”’, k“’ ,  independent of k, such that for p, B, J,, 
Jy E D  and k > k”’  

lak - 11 < A”’k-’. (3.3) 

Let is be said that when ( & I ,  & 2 )  take their principal pair of values ak, A and C 
take their principal values and lie on the principal Riemann surface and will be 
labelled Ukp, A, and C, respectively. From equation (3.3) akp converges 
absolutely and uniformly in any finite domain as 1 + CO. Hence by Copson (1935, p 94) 
A, and C, exist and are analytic in p, B, J,, Jy except where any akp has a singularity. 
The uniformity of convergence combined with the continuity of the Si;  show that 
each eigenvalue of { Z N } ,  is continuous everywhere in 0, B, J,, J,. 

3.2. The analyticity of the eigenvalues 

The eigenvalues and &p may be regarded as functions of the variables K, t, y. A brief 
exposition of the theory of functions of several complex variables may be found in 
chapters 1 of Narasimhan (1971) or HerVC (1963). By equation (2.6) tka may have a 
branch-point singularity on the surfaces Pka = *1 for if K, t, y vary in such a way that 
P k p  makes a small contour round this value [ka is deformed into ti:. Inserting P k a  = 1 
into equation (2.7) one obtains 

Provided one does not have 

at pkp = 1 then &a is a two-valued function in a small neighbourhood of this surface. 
Differentiating equation (2 .7 )  shows that apka/at # 0 if k f 0 so that t k p  is two valued 
where Pk,, = 1 .  It can, however, be shown that on passing round the surface t = 1 p o p  
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makes two contours round 1 so that t o a  is not singular in this neighbourhood. 
Inserting P k a  = -1 into equation (2.7) one  obtains the family of singular surfaces 

for k = 1 , 2 , 3 , .  . .. (3.5) 1 t = -1 *i?rkK- '  

pka and ,$ka are also singular on the surface where p k 1  equals p k 2  for on making a 
contour round this surface P k l  is deformed into P k o .  By equation (2.12) the surface is 
where 

y 't' - (1 - y 2 ) ( y Z  + ~ v ' K  -' k ') = 0. (3.6) 

If t k l  and tk2 both take their principal values they exchange values on making a small 
contour round this surface so that ak, by equation (2.20) is unaltered. Each ak has 
four possible values since &a can be replaced by and if k is non-zero all these 
values may be otained from ak, by analytic continuation. A singularity in ak where 
equation (3.6) is satisfied may occur on some Riemann surfaces but not others. 

The  singularities of A occur where one  of equations (3.4), (3.5) or (3.6) is satisfied 
for odd k. In the neighbourhood of most points on these singular surfaces A is a two 
valued function. It has already been shown that A is continuous everywhere. Katsura 
and Ohminami (1972) assumed that A is singular if the integrand of equation (2.23) is 
infinite for some value of q. This we believe to be incorrect for by substituting q = eiz 
the integral may be turned into a contour integral and by deforming the contour it is 
often possible to avoid this infinity. The  singularities obtained from equations (3.4) 
and  (3.5) form two families of surfaces which all meet at  t = i l  and zero temperature. 
These are critical points (Suzuki 1971). 

Analytic continuation of A, round a contour leads to a new value of the form 
A ,  &ka) ,$ i i??> la  where each n z k - l o  is 0 o r  2. This is also an eigenvalue of the 
transfer matrix form. Not all eigenvalues can be generated from A, in this way as for 
example A, ,$;:,$;; t o  be found in equation (2.18). Those eigenvalues involving C 
cannot be generated f rom A, either. The  eigenvalues of the transfer matrix of the 
Ising spin-; chain in the absence of a magnetic field are 2 cosh p J  and 2 sinh pJ  which 
cannot be analytically continued into each other. If a longitudinal magnetic field is 
allowed to vary, however, the eigenvalues (Stanley 1971, p 133) can be analytically 
continued into each other. We  conjecture that for the X Y  model in a general 
magnetic field all the eigenvalues can be generated from A,  by analytic continuation. 

3.3. The behaviour as temperature T + a and 0 

It follows from equation (2.7) that toa is independent of temperature T. If y # * 1 and 
k # 0, then from equation (2.15) each 5 k a  varies as T as T + a. As T + CO, A, + 2 but 
by equations (2.24) and (2.2) C, varies like T- ' .  It is clear from equations (2.18) and 
(2.19) that the largest eigenvalue of the transfer matrix form is approximately 2, the 
next two largest vary as T-' and after that there are an infinity of eigenvalues which 
vary as T-'. This is true whether t 5 i l .  For y = *1 by equation (2.26) each & 1  

varies as T 2  for k # 0 and each &2 = a. Hence, after the largest eigenvalue there is 
only one  eigenvalue SIC or SIC,$O: which varies as T-' and after that an infinity of 
eigenvalues vary as T - 3 .  For the Heisenberg chain numerical evidence (§ 1.1) 
suggests that after the largest eigenvalue there are three eigenvalues which vary as 
T-l. 

As T + 0 it follows from equations (2.23), (2.24) and  (2.2) that CIA + 1 and from 
equations (2.12) and (2.25) that / & + I  -&a1 + O for any k. If some ]&a]  = 1 then from 
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equations (2.18) and (2.19) there must be many eigenvalues whose moduli are close to 
A,. For real physical parameters this can happen only if t = *1 or  if y = 0 and 111 < 1. 
When t = 2 1 ,  tol = *l but in the other case where y = 0 and /ti < 1, Col and to* are 
complex conjugates and lie on the unit circle. The  two situations are different, the first 
being critical points. For It\< 1 as T+O the two largest eigenvalues are A ,  and C, 
which are nearly equal. For It\> 1, A ,  remains greater than all the other eigenvalues 
as T + 0  since by equation (2.19) C, is no  longer an eigenvalue. This situation very 
closely resembles the Onsager solution. t in the X Y  chain roughly corresponds to  
temperature in the Ising square lattice. The  relationship between the two models is 
particularly remarkable in the case where y = *1 and will be discussed in detail below. 

4. Comparison between the eigenvalue distributions of various models 

4.1. The Ising square lattice and the Ising chain with transverse magnetic field 

Suppose we have a square lattice with m columns and N rows joined up  to form a 
torus and a Hamiltonian given by 

Here (ij)E S,  means that j is the right-hand neighbour of site i. S ,  is the same in the 
vertical direction. Let 

4 = 2PJx, CL = 2PJy, 8 = 2 tanh-' (e-'@'Y) 

q k  =e"-e+ee-"+(e"+e+e-"-c e"-e - sin' ( r rk /2m) .  (4.2) 

For real Jx and Jy it is assumed that q k  3 1 except that qO< 1 when 8 > d .  From 
Kaufmann (1949, equation (39)) it may be shown that the partition function is given 
by 

( m  + 1 ) / 2  ( m +  I)/ '  
2 z m N = F N  n, (1+q;kN_1)2+FN (1-q;/-_1)2 

k = 1 / 2  k = 1 / 2  

m/  2 m / 2  

& = O  k = O  
+GN n, (1+q;;)'+GN n' (1-q;;)'. (4.3) 

where 

If one considers the limit as m + 00 the eigenvalue distribution for the Ising square 
lattice bears a very close resemblance to that of the Ising chain with transverse 
magnetic field if the parameters are correctly chosen. If equation (2.26) is matched 
with equation (4.2) 

(4.5) t = e  e-" , K-' = (,"+e +e-"-' - t - t-')tm-', 

As m and K +CO,  q k  + Ckl,  C I F  + 1 for f3 < q5 and C,/A, + 1. The  similarity between 
equations (2.17) and (2.28) and equations (4.3) and (4.4) is obvious. If the eigen- 
values of the two matching models are A O I , A O X Y ,  A I 1 ,  A l x y  etc, taken in order of 
decreasing magnitude, then as m + 00 

A i I I A o I  + A i x Y I A o x Y .  (4.6) 
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Where 8 > 4 and It1 > 1 

G VoF, c = 501A,, 

since rlOl, tol are replaced by T O ' ,  50:. Since T~ and tol are nearly equal equation 
(4.6) still holds. 

4.2. The replacement of an interaction by a mean field 

The result above means that one of the interactions of the Ising square lattice can in a 
sense be replaced by a mean field while preserving the eigenvalue distribution. Below 
one of the interactions of the isotropic field free XY chain is replaced by a mean field 
and the eigenvalue distributions compared. 

Let us consider models A, B, C, D with Hamiltonians HAN, HBN,  HCN, HDN 
defined below, and their partition functions ZAN, ZBN,  ZCN, ZDN. 

N 

HAN = -J C Uzjr Z A N  = [2 cosh (/3J)IN 
j = l  

N 

H B N  = -J E Uz,urj+lr Z B N  = [2 cosh ( P J ) I N  + [2 sinh (PJ)]" 
j =  1 

N 

H D N  = -J' 1 (Ux,gxj+l+ g y / g y j + l ) *  
j= l  

Systems A and B are thermodynamically equivalent, although {.TAN} has only one 
eigenvalue and { Z B N }  has two. It can be shown from equations (2.2) and (2.23) that 
systems C and D are thermodynamically equivalent when 2J = J' and t = f 1. Inspec- 
tion shows that the eigenvalue distributions are again different. In both cases an 
interaction is replaced by a mean field. 

However, let us compare systems C and D when t = - 1 ,  J' = J and K = 2pJ is 
positive. So = S1 = 1 in both cases. Applying equation (2.26) to system C one obtains 

[L{2 = &rK- 'k .  (4.7) 

Applying equation (2.12) to system D one obtains 

&a = *irK-'k.  

If one considers system D with two sites as the basic unit, the correct partition function 
is obtained if each &a is replaced by [ in  : 

+.$i.1'2 = *irK-'k.  (4.8) 

It must be remembered that here there is both ti1 and ti2 which are both equal, 
whereas in equation (4.7) there is just & l .  The factor of t in equation (4.7) approxi- 
mately doubles the density of the & l  and compensates for this. Thus, {Z&} and 
{ZDZN} have similar eigenvalue distributions. 

4.3. The open X Y  chain 

The open isotropic X Y  chain with N - 1 sites and N - 2 bonds, solved by Matsubara 
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and Katsura (1973) has a partition function given by 

1/2 

2N-1 ( n cosh vq) {cosh [ K ( t  - l ) ]  cosh [ K ( t  + 1)]}-1’2. (4.9) - - 
O € P -  

Here 9- is the set {.rrj/N} for integral j = 1 to 2N, and in accordance with equation 
(2.2) vq = K ( t  -cos 9). Just as equation (2.17) was obtained from equation (2.1) 

This can be expanded to give a transfer matrix form as before, but the residues are 
now no longer integers. 

For an open system with a conventional transfer matrix 2, is of the form a . T N .  b, 
while for a closed system ZN is of the form tr ( T N ) .  Thus for the closed system all the 
eigenvalues of T are present in the transfer matrix form, and the residues must be 
negative integers depending on the degeneracy of the eigenvalues. For the open 
system the eigenvalues must be the same as before, but the residues depend on a and 
b and no longer need be integers. Since they may be zero, some eigenvalues present 
for the closed system may be absent for the open system, but not vice versa. This is 
clearly borne out in the comparison between the closed and open isotropic X Y  chains. 
It was observed by Denbigh (1974) that the c-cyclic problem, an X Y  chain with 
unusual boundary conditions, has eigenvalues not common to those of the ordinary 
X Y  chain. However, one of the bonds involves the spins of every site and one would 
not expect transfer-matrix-like behaviour to occur anyway. 

If the temperature of the open system is halved K is replaced by 2K. Because the 
[ k p  are now twice as dense as before the N-dependent factor of ZopN-l is now 
approximately 

This yields an eigenvalue distribution rather similar to that of { & N }  for the closed X Y  
chain as can be seen by examination of equation (2.17). 

The Pad6 analysis method, described in 0 1 ,  for obtaining A numerically is least 
effective at low temperatures where the eigenvalues crowd together. The above result 
shows that the open chain is much more suitable for Pad6 analysis than the closed one, 
and this is probably true for other models. For antiferromagnetic systems the spins of 
neighbouring sites tend to orientate themselves in opposite directions, and if N is odd 
and the chain is closed they do not match up. For this reason { Z Z N }  is a somewhat 
different sequence from { Z Z ~ - ~ }  as observed by Bonner and Fisher (1964) for the 
closed Heisenberg chain. This results in the generation of important eigenvalues 
which do not exist for the open chain. It can also be shown by the transfer matrix 
method that in the partition function of the open field free Ising chain the coefficient 
of the smaller eigenvalue vanishes. This is no longer true when a longitudinal 
magnetic field is introduced and the second eigenvalue is now present. 
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5. Summary and discussion 

The new form of solution to the X Y  chain that has been obtained shows a remarkable 
similarity to the Onsager solution, especially in the case where y = *l. This suggests 
that solutions of one-dimensional problems may lead to solutions of higher-dimen- 
sional problems. In particular, the Ising chain in a general field may be related to the 
Ising square lattice in a longitudinal field, Suzuki (1971, equations (4.23a)-(4.256)) 
proved several relations between the critical exponents of the two models. H e  showed 
the susceptibility with respect to a small field parallel to the X axis of the X Y  chain at 
zero temperature varies as (B - 2J)-7/4 just as the susceptibility of the Ising model in 
two dimensions varies as ( T  - Tc)-7'4. 

The singularities of A = limN+m ZyFN have been studied. It is shown that A is 
singular where 

B = +2J  f. i&kkeT for odd k, 

T being temperature. Each singular surface passes through one of the two critical 
points B = *2J, T = 0. It is also found that if T, B, J, y are arbitrary analytic functions 
of some parameter z then most of the singularities of A are twofold branch-point 
singularities like ( z  - z ~ ) ~ / * .  If higher-dimensional models also have an infinite 
number of singular surfaces intersecting at the critical points this possibly suggests that 
two-variable rational approximants (Chisholm 1973) would give poor results. 

It is shown in 9 4 that there is a similarity between the eigenvalue distributions of 
the Ising square lattice and the Ising chain with transverse field and also between the 
isotropic X Y  chain and the Ising chain with transverse field. In both cases an 
interaction has been replaced by a mean field. The Heisenberg chain has a critical 
point at T = 0, B = 0 where the susceptibility tends to infinity. Numerical studies 
mentioned in 9 1.2 indicate that as this point is approached the moduli of many 
eigenvalues approach the dominant eigenvalue. At  high temperatures all spin-; 
chains must have their largest eigenvalue approximately two since 2, = 2N. Numeri- 
cal results indicate that after this the Heisenberg chain has three eigenvalues of order 
T-'. Exact results above show that the X Y  chain with y # rt 1 has two eigenvalues of 
order T-' and the Ising chain in transverse or longitudinal field has one eigenvalue of 
order T-' .  I t  appears that the number of eigenvalues of order T-' is the same as the 
dimensionality of the interaction. 

These results suggest that different models which have transfer matrices of infinite 
order may have basic similarities in their eigenvalue distribution. There are various 
schemes by which this idea could be used to improve the method of numerical 
examination outlined in 9 1.2. For example, if U is a one-dimensional model consider 
the sequence 

Here ZUN is the partition function of model U with N sites, ZxyN is the partition 
function of the X Y  chain with suitably chosen T, B, J, y,  the A X Y i  are its eigenvalues in 
order of decreasing magnitude, the -gxy are the residues and k ,  M are suitably 
chosen numbers. If the distribution of the smaller eigenvalues is similar for the two 
models then their contribution to the Z h  nearly cancels itself. Only the first few 
eigenvalues of { Z U N }  make a significant contribution to the Z L  making the generating 
function of this sequence easy to Pad6 analyse. The advantages of such a procedure 
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must be greatest at low temperatures where { Z U ~ }  is most likely to  be  hard to  Pad6 
analyse. The  best values of k ,  T, B, J ,  y could be found by inspection. I t  has been 
shown in 0 4.3 that the open isotropic XY chain has far fewer eigenvalues than the 
closed chain, suggesting that open chains are generally more suitable for numerical 
analysis than closed chains. 
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Appendix. The continuity of the a& and and the zeros of the ak 

Let  U be any point in p, B, J,, J ,  space and let P ( z )  be the polynomial defined in 
equation (3.1). If is such that P(&:) is zero let r be any small circle in the z plane 
round S i ;  and let M be the greatest lower bound of iP(z)I on r. Suppose that p, B, J,, 
Jy  are changed slightly so that P ( z )  becomes P ( z ) + Q ( z ) .  If M>O there is a 
sufficiently small neighbourhood, D of U such that lQ(z)l<M when p, B, J,, J,lies in 
D. By RouchC’s theorem (Copson 1935, p 119) P ( z ) +  Q(z) has the same number of 
zeros within r as P ( z )  when p, B, J,, J, likes in D. This means that 6;; has not moved 
outside r as a result of a small change in p, B, J,, J, and hence is continuous in p, 
B, J,, J,. Having chosen a suitable value of z ,  equations (2.4) and (2.8) show that a k p  is 
continuous in p, B, J,, J y  and non-zero at  U. 

If M is zero for all r of sufficiently small radius, then the coefficient of each zi in 
P ( z )  is zero. Let such a U be labelled L and be pL, BL, J x L ,  JyL. ( ( k l ,  t k 2 )  may take 
any values one  likes at  L. The left-hand side of equation (2.4) or  (2.8) for relevant k 
is zero at L and there exists 7 such that it is of modulus less that 

~ ( I P - P L I + I B - B L I + I J ~ - J ~ L I + I J ~ - J ~ L I ) ( ~ + I ~ * / + I ~ - * / )  

in some neighbourhood of L. For any (ti:, 6 ; ; )  a z on the unit circle may be found 
such that each 11 -&;~**/>0.1.  Equations (2.4) and (2.8) show that a k p  is zero and 
continuous at  L. 

The  alternative values of a k p  are a k p ,  a k a ; : ,  a k k i ; ,  ak&:&: for k > o and they 
must be continuous in p, B, J,, Jy everywhere and zero at  L. a. is similarly continuous 
and  zero only at  L. 

It may further be shown that 6;; is analytic in 6, B, J,, J, except where 6;: is a 
repeated solution of P ( z )  = 0. For except at these points aP/az is non-zero so that 

is well defined. 6:; must be an analytic function of p here and by similar arguments it 
is analytic in B, J,, J,. This means that all the eigenvalues of the transfer matrix form 
are analytic except where two are equal. Such behaviour is typical of the eigenvalues 
of a transfer matrix whose coefficients are analytic functions of the physical 
parameters. 
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